๐ Overview: This course dives into the core concepts of deep learning, helping learners understand neural networks, image processing with CNNs, time-series analysis with RNNs, and the power of transfer learning.
Module 1: Neural Networks Explained
๐น What is a Neural Network?
๐น Understanding Perceptrons & Activation Functions
๐น Forward & Backpropagation in Deep Learning
๐น Optimizers: Gradient Descent, Adam, and RMSprop
๐น Hands-on: Build a Simple Neural Network Using TensorFlow/PyTorch
Module 2: Convolutional Neural Networks (CNNs) for Image Processing
๐น Understanding Convolutions & Filters
๐น How CNNs Recognize Features in Images
๐น Popular CNN Architectures (LeNet, AlexNet, VGG, ResNet)
๐น Data Augmentation & Image Classification
๐น Hands-on: Build an Image Classifier with CNNs
Module 3: Recurrent Neural Networks (RNNs) for Time Series Data
๐น Why Use RNNs?
๐น Sequence Models & Long Short-Term Memory (LSTMs)
๐น Gated Recurrent Units (GRUs)
๐น Time Series Forecasting & NLP Applications
๐น Hands-on: Train an RNN for Sentiment Analysis or Stock Prediction
Module 4: Transfer Learning and Pre-trained Models
๐น What is Transfer Learning?
๐น Using Pre-trained Models (VGG, ResNet, BERT, GPT)
๐น Fine-tuning vs. Feature Extraction
๐น Applications in Image & Text Processing
๐น Hands-on: Fine-tune a Pre-trained Model for a Custom Task
Final Project: Train Your First Neural Network
๐น Choose a real-world problem (Image Classification, NLP, or Time Series)
๐น Build and Train a Deep Learning Model
๐น Evaluate and Improve Model Performance
๐น Deploy the Model (Optional)
Instructor
