๐ Overview: This course provides a comprehensive understanding of neural networks, covering everything from building models from scratch to advanced architectures like CNNs, RNNs, LSTMs, and GANs.
Module 1: Neural Networks from Scratch
๐น Introduction to Neural Networks & Perceptrons
๐น Activation Functions (ReLU, Sigmoid, Tanh, Softmax)
๐น Forward Propagation & Backpropagation
๐น Optimization Techniques (Gradient Descent, Adam)
๐น Hands-on: Build a Simple Neural Network from Scratch Using Python & NumPy
Module 2: Convolutional Neural Networks (CNNs)
๐น Introduction to Image Processing with Deep Learning
๐น Convolutional Layers, Pooling, and Feature Extraction
๐น Popular CNN Architectures (LeNet, AlexNet, VGG, ResNet)
๐น Data Augmentation & Transfer Learning in CNNs
๐น Hands-on: Train a CNN for Image Classification
Module 3: Recurrent Neural Networks (RNNs) & LSTMs
๐น Understanding Sequential Data & Why We Need RNNs
๐น RNNs vs. Long Short-Term Memory Networks (LSTMs)
๐น Gated Recurrent Units (GRUs) for Efficient Learning
๐น Applications in Time Series Forecasting & Natural Language Processing
๐น Hands-on: Train an RNN/LSTM for Text Generation or Sentiment Analysis
Module 4: Generative Adversarial Networks (GANs)
๐น What Are GANs? Generator vs. Discriminator
๐น How GANs Create Realistic Images & Videos
๐น Types of GANs (DCGAN, CycleGAN, StyleGAN)
๐น Applications of GANs (AI Art, Deepfakes, Data Augmentation)
๐น Hands-on: Train a GAN to Generate New Images
Final Project: Build & Train a Deep Learning Model
๐น Choose a Deep Learning Task (Image Classification, Text Generation, or GAN-based Model)
๐น Implement & Train the Model Using TensorFlow/PyTorch
๐น Fine-tune & Optimize Performance
๐น Deploy the Model (Optional)
Instructor
